

BMX Kinase Assay

By Jacquelyn S. Turri, M.S., Juliano Alves, Ph.D., Said A. Goueli, Ph.D., and Hicham Zegzouti, Ph.D., Promega Corporation

Scientific Background:

The BMX gene encodes a non-receptor tyrosine kinase, which may play a role in the growth and differentiation of hematopoietic cells (1). The BMX gene is located on chromosomal band Xp22.2 between the DXS197 and DXS207 loci. Interestingly, chromosome X also contains the closest relative of BMX, the BTK gene, implicated in X-linked agammaglobulinemia. BMX, is found to induce activation of the Stat signaling pathway (2).

- 1. Tamagnone, L. et al: BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene. 1994 Dec;9(12):3683-8.
- Saharinen, P. et al: The Bmx tyrosine kinase induces activation of the Stat signaling pathway, which is specifically inhibited by protein kinase Cdelta. Blood. 1997 Dec 1;90(11):4341-53

ADP-Glo™ Kinase Assay

Description

ADP-GloTM Kinase Assay is a luminescent kinase assay that measures ADP formed from a kinase reaction; ADP is converted into ATP, which is converted into light by Ultra-GloTM Luciferase (Fig. 1). The luminescent signal positively correlates with ADP amount (Fig. 2) and kinase activity (Fig. 3A). The assay is well suited for measuring the effects chemical compounds have on the activity of a broad range of purified kinases—making it ideal for both primary screening as well as kinase selectivity profiling (Fig. 3B). The ADP-GloTM Kinase Assay can be used to monitor the activity of virtually any ADP-generating enzyme (e.g., kinase or ATPase) using up to 1mM ATP.

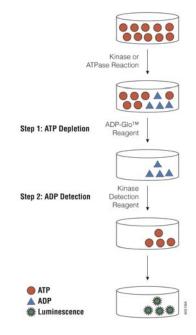


Figure 1. Principle of the ADP-Glo™ Kinase Assay. The ATP remaining after completion of the kinase reaction is depleted prior to an ADP to ATP conversion step and quantitation of the newly synthesized ATP using luciferase/luciferin reaction.

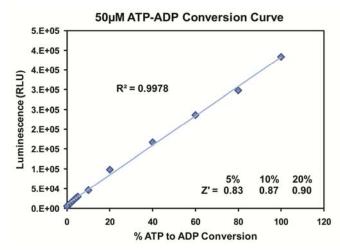
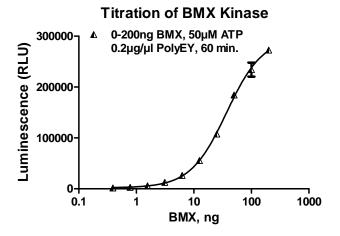


Figure 2. Linearity of the ADP-Glo Kinase Assay. ATP-to-ADP conversion curve was prepared at 50μ M ATP+ADP concentration range. This standard curve is used to calculate the amount of ADP formed in the kinase reaction. Z' factors were determined using 200 replicates of each of the % conversions shown.

For detailed protocols on conversion curves, kinase assays and inhibitor screening, see *The ADP-Glo™ Kinase Assay* Technical Manual #TM313, and the KES Protocol available at: http://www.promega.com/tbs/tm313/tm313.html, and http://www.promega.com/tbs/tm313/tm313.html, and http://www.promega.com/tbs/tm313/tm313.html.


Protocol

- Dilute enzyme, substrate, ATP and inhibitors in Tyrosine Kinase Buffer.
- Add to the wells of 384 low volume plate: 1 μl of inhibitor or (5% DMSO)
 2 μl of enzyme (defined from table 1)
 2 μl of substrate/ATP mix
- Incubate at room temperature for 60 minutes.

- Add 5 μl of ADP-Glo[™] Reagent
- Incubate at room temperature for 40 minutes.
- Add 10 µl of Kinase Detection Reagent
- Incubate at room temperature for 30 minutes.
- Record luminescence (Integration time 0.5-1second).

Table 1. BMX Enzyme Titration. Data are shown as relative light units (RLU) that directly correlate to the amount of ADP produced. The correlation between the % of ATP converted to ADP and corresponding signal to background ratio is indicated for each kinase amount.

BMX, ng	200	100	50	25	12.5	6.3	3.1	1.6	0.8	0.4	0
Luminescence	272727	234432	184494	107520	55656	26264	12503	5831	2835	1690	781
S/B	349	300	236	138	71	34	16	7	4	2	1
% Conversion	85	73	57	33	15	7	3	1	0.5	0.2	0

Staurosporine Titration

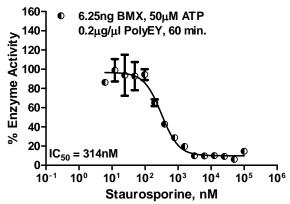


Figure 3. BMX Kinase Assay Development. (A) BMX enzyme was titrated using 50μM ATP and the luminescence signal generated from each of the amounts of the enzyme is shown. (B) Staurosporine dose response was created using 6.25ng of BMX to determine the potency of the inhibitor (IC₅₀).

Assay Components and Ordering Information:	Promega	SignalChem Specific in Signaling Proteins
Products	Company	Cat.#
ADP-Glo [™] Kinase Assay	Promega	V9101
BMX Kinase Enzyme System	Promega	V4512
BMX Kinase Enzyme System ADP-Glo [™] + BMX Kinase Enzyme System	Promega	V4513
BMX Kinase Buffer: 40mM Tris, pH 7.5; 20mM MgCl ₂ ; 0	.1mg/ml BSA; 2mM MnCl ₂ ; 50μM I	DTT.